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Figure 1: Design, training, and sim-to-real deployment of our custom-built humanoid with a
learning-based controller.

Abstract: We introduce Syntrynos Robotics, a reliable and low-cost mid-scale 
robotics research platform designed for advanced control systems. Our 
lightweight, in-house-built robotics unit is specifically engineered for control 
algorithms with low simulation complexity, human-like motion, and high 
reliability against impacts. The unit’s narrow sim-to-real gap enables agile and 
robust movement across various terrains in outdoor environments, achieved 
through a simple reinforcement learning controller utilizing light domain 
randomization. Furthermore, we demonstrate the unit traversing hundreds of 
meters, walking on steep unpaved trails, and performing hops with both single 
and double legs, showcasing its high performance in dynamic movement. 
Capable of omnidirectional locomotion and withstanding large perturbations 
with a compact design, our system is focused on scalable, real-world deployment 
of advanced robotics systems.

Keywords: Humanoid, Hardware Design, Reinforcement Learning

1 Introduction

There is a significant demand for mid-scale robotics systems that are designed for rapid 
deployment of advanced control algorithms, resilient to falls and failures, and cost-effective, while 
still capable of executing highly dynamic movements. Many existing bipedal and humanoid robots 
tend to be larger, less safe, and require multiple operators to function effectively. In contrast, 
working with smaller, shorter-legged robots is more practical due to their lightweight design, which 
eliminates the need for heavy equipment like gantry cranes. These robots can typically be handled 
by a single person, and falls rarely cause damage to the robot or its surroundings, making them 
ideal for experimental environments. Testing can also be conducted in smaller lab spaces, and 
rough terrain can be easily simulated for validation purposes due to their lower ground clearance. 
There is a clear demand for compact, reliable, and affordable robotic systems.
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Legged humanoid and quadruped robots with custom high-torque density actuators are designed 
for rapid learning policy iteration. Mechanical design becomes more challenging for shorter-legged 
robots—whether humanoids or quadrupeds—due to limited space for housing components like 
motors, sensors, and wiring, which necessitates the use of compact, power-dense actuators. These 
components are often very expensive or unavailable off-the-shelf. Integrating all necessary parts 
into a compact volume without sacrificing performance or affordability is difficult. Additionally, 
mid-scale robots, including both humanoids and quadrupeds, are frequently used to push the limits 
of dynamic and agile tasks, requiring a high torque-to-weight ratio and increased impact reliability.

Control for mid-scale robots, particularly humanoids and quadrupeds, is more challenging due to 
their lower center of gravity and heightened sensitivity to disturbances, which often leads to 
instability. Their reduced mass and inertia make these robots more agile but also more sensitive to 
even small forces, which can result in significant movement. For both humanoids and quadrupeds, 
shorter legs result in a reduced stride length, often requiring multiple steps to counteract 
disturbances. Additionally, these robots require higher frequency leg movements to adjust foot or 
paw placement rapidly, necessitating precise coordination and control. As a result, actuation of 
joints must be quick and accurate to support high-frequency motions, while the control policies 
need to be exceptionally precise and robust to manage the short-time dynamics. Moreover, 
learning-based algorithms, which are predominant in the control of both humanoids and 
quadrupeds, face substantial sim-to-real gaps, especially in executing rapid and dynamic motions 
required for controlling these robots. Consequently, learning-based control for mid-scale robots 
presents unique challenges.

To address these issues, we propose the custom development of mid-scale humanoid and 
quadruped platforms with a special focus on facilitating learning-based control. To achieve 
accurate, robust, and agile control, we leverage learning-based algorithms and focus on narrowing 
the sim-to-real gap through optimized hardware design. These algorithms allow us to use more 
cost-effective, noisier sensors, reducing overall costs. To further optimize simulation performance 
and achieve high-performance actuation, we employ custom modular actuators with integrated 
transmission, hollow shafts, and EtherCAT for communication.

Our contributions are summarized as follows: (i) We present reliable, low-cost, mid-scale 
humanoid and quadruped research platforms that focus on narrowing the sim-to-real gap with 
design considerations tailored for learning-based control. (ii) We demonstrate that our design 
choices enable the use of minimally composed control policies to perform dynamic and robust 
locomotion across complex terrains, notably the challenging task of walking on steep, narrow, and 
unpaved trails. (iii) The codebase for policy training using the recent Isaac Lab release will be open-
sourced to support future research in humanoid and quadruped robotics.

2 Related Work

Robot Design: We categorize robots—humanoid, quadruped, and aerial—into three primary sizes: 
(a) full-scale, comparable to the size of an average adult, (b) mid-scale, similar to the size of a child, 
and (c) miniature, which refers to smaller, non-human-sized robots. Full-scale humanoid or biped 
research platforms generally have a larger weight and utilize high gear ratio Harmonic Drive 
actuators. These platforms are primarily capable of walking and performing simple arm 
manipulations. Some platforms also incorporate Cycloidic Drive Actuators for high-load joints, 
along with spring and linkage designs. This setup simplifies the design of reduced-order, step-to-
step model-based controllers. However, for recent learning-based algorithms, these designs, while 
optimized for model-based control, inadvertently affect training and deployment.

In contrast, more lightweight platforms featuring Quasi-Direct-Drive (QDD) actuators and 
primarily dummy arms have recently been developed, enabling them to perform more dynamic 
tasks. Besides full-scale humanoids, mid-scale or miniature humanoid research platforms have 
grown in popularity over recent years. These platforms also opt for QDD actuators, designed for 
improved dynamic performance, although most lack fully articulated legs.

Beyond humanoid platforms, quadruped robots have gained traction due to their ability to navigate 
complex terrains, leveraging robust leg designs and QDD actuators for agile movement. These 
quadrupeds are particularly useful in environments where stability and mobility are critical. On the 
other hand, aerial robots, including drones, also play a key role in expanding robot design, offering 
enhanced surveillance, monitoring, and operational capabilities in areas difficult to access by 
ground-based robots.
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Table 1: Comparison of existing electric humanoid locomotion research platforms.

Robot Sizea Avg. Leg b Leg Weight Price Actuatorc Max HFE Max KFE Transmission T/F
Len.(m) Dof (kg) (USD) Type Tor.(Nm) Tor.(Nm) Complexity Sensor

TORO [1] F ∼0.4 6 76.4 - H 100 130 ++ Joint
LOLA [2] F ∼0.44 6 68.2 - H 370 390 +++ Feet

WALK-MAN [3] F ∼0.38 6 132 - H 270-400 270-400 ++ Feet
Unitree H1 [5] F ∼0.4 5 47 90K P 270 360 + ✗

Digit [4] F ∼0.5 6 50 250K C, H 200 230 +++ ✗
ARTEMIS [16] F ∼0.38 5 37 - P 250 250 + Feet

Cassie [15] F ∼0.5 5 35 250K C, H 195 195 +++ ✗
MIT [18] M ∼0.28 5 24 - P 72 144 + ✗

Unitree G1 [19] M ∼0.3 6 35 16K P 88 139 + ✗
HECTOR [17] M ∼0.22 5 16 - P 33.5 51.9 + ✗

iCub [44] M ∼0.2 6 24 300K H 40 40 ++++ Feet
BRUCE [10] S ∼0.17 5 3.3 6.5K P 10.5 10.5 + ✗

NAO [45] S ∼0.15 6 4.5 14K S 1.61 1.61 + Feet
DARwIn-OP [46] S ∼0.09 6 2.8 - S 2.35 2.35 + Feet
Surena-Min [47] S ∼0.085 6 3.3 - S 3.1 7.3 + ✗

Ours M ∼0.2 6 16d 10Ke P 62.6 81.1 + ✗

a F, M, and S represent Full, Middle, and Small, respectively.
b Average length of thigh and calf.
c H, P, C, and S represent Harmonic Drive, Planetary, Cycloidal Drive, and Servo Motor with

a high reduction ratio, respectively.
d Without arms. The estimated weight of two 4 DoF arms is 6kg, the total weight will be 22kg.
e Without arms. The estimated cost of two 4 DoF arms is 5K USD, the total non-profit cost will be 15K USD.

transmissions between joints and actuators [21]. Boston Dynamics’ hydraulic Atlas [22] excels in 
highly dynamic tasks, and the newly released electric Atlas [22] showcases simplified joint designs 
with a large range of motion. The robots from companies are well-designed and well-tested, but 
unfortunately, most of them are not available for researchers in labs or do not provide access to 
modify or improve the low-level system.

Humanoid and Quadruped Control
Controlling both humanoid and quadruped robots presents significant challenges in the field of 
robotics. Utilizing various control approaches, from heuristic-based methods to model-based 
control, both humanoids and quadrupeds have been equipped with stable movement abilities. 
Recently, learning-based approaches have demonstrated promising capabilities for both types of 
robots, ranging from locomotion to manipulation. Dynamic locomotion has been shown for both 
humanoids and quadrupeds, with examples such as walking on rough terrain, resisting large 
disturbances, running, and even performing complex motions like parkour. These works often rely 
on complex neural networks and training pipelines to improve expressiveness, or they utilize a 
history of state-action pairs for online adaptation, which helps reduce the sim-to-real gap in 
deployment. However, performing dynamic motions with a simple algorithm and architecture 
remains challenging.

Moreover, previous research often includes broad distributions of domain randomization to 
account for robustness and to mitigate the imprecise models associated with complex 
transmissions. Unfortunately, excessive randomization can hinder successful policy learning or lead 
to overly conservative strategies. Despite the progress in controlling full-scale humanoid and 
quadruped robots, learning control policies for smaller-scale systems pose additional challenges, 
particularly due to shorter-legged designs. These designs, which are common in quadrupeds as well 
as humanoids, lead to limited dynamic motion capabilities. For example, teaching miniature robots 
to perform tasks like soccer-playing has historically been met with challenges, such as using flat foot 
designs and servo motors, which restrict the robots' ability to perform dynamic movements. In 
contrast, our design utilizes smaller feet and more powerful actuators, enabling more dynamic and 
agile motions, albeit with increased control challenges.

3 Design for Learning-based Control

In this section, we will introduce our humanoid robot design. First, we provide an overview of the 
system design, and then, we will explain the motivations and our solutions behind the design choices 
tailored for learning-based control algorithms.
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Figure 2: Overview of design: (a) main components, (b) joints and key dimensions, (c) key actuators
and joints of the left leg.
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Figure 3: (a) Exposed view and (b) cross view of one of our custom actuators.

3.1 System Overview

The Syntrynos Robotics Unit is a 16 kg, fully electric mid-scale robot designed for advanced 
research in robotics. The main component is shown in Figure 2(a). The robot has a torso and two 
6-DoF legs, with a thigh length of 220 mm, a calf length of 180 mm, and a total height of 0.85 m in a 
nominal standing configuration, resembling the body shape of a 5-year-old child.

Inside the torso, a computer, a power management board, and an affordable IMU sensor are 
installed. In addition, two easily replaceable batteries are mounted in a protected compartment 
within the torso. Each leg is equipped with 6 actuators for the 6 joints, most of which are directly 
attached to the link and act as a joint. Although two 4-DoF arms were designed, they were omitted 
to simplify the focus on locomotion abilities. To adapt to different torque requirements on each 
joint, Syntrynos Robotics developed 4 types of actuators, categorized by motor size, and 2 types of 
motor drivers for each leg, as shown in Table 2 and Figure 10. These high-performance actuators 
allow the robot to execute highly dynamic maneuvers.

The communication system is another critical component of the Syntrynos design. To enable 
precise communication with minimal latency, the system employs a high-bandwidth EtherCAT 
protocol. Syntrynos has developed custom EtherCAT clients for both motor drivers and the IMU. 
The onboard PC runs the EtherCAT master and communicates with peripherals at frequencies 
ranging from 1 kHz to 4 kHz. USB and ethernet connections are also supported for interfacing 
external sensors, such as depth cameras, lidar, or other devices. For user development and 
debugging, a router inside the torso provides both wired and wireless connections to the onboard 
PC.

Nearly every part of the robot is custom-designed and built, including the actuators, mechanical 
components, motor drivers, IMU, communication system, and power management board. This 
comprehensive understanding of the entire system allows Syntrynos Robotics to explore new 
control strategies with a narrow sim-to-real gap, while meeting specific hardware requirements for 
learning-based algorithms.
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Table 2: Custom Actuator Specifications.

Actuator 5013 8513 8518 10413

Mass (g) 251 756 856 1011
Gear Ratio 9:1 9:1 9:1 9:1

Hollow Shaft ✗ ✓ ✓ ✓
Diameter × Thickness (mm) 54.6 × 53 104 × 50 104 × 55 123 × 50

Peak Torque (Nm) 9.7 45.3 62.6 81.1
Sustained Torque (Nm) 4.59 18.9 26.1 34.2

Max. Speed at 48V (rad/s) 83.7 40.7 29 27.9
Max. Power (W) 220 570 730 890

Rotor Inertia (kgm2) 6.1e-6 6.9e-5 9.4e-5 1.5e-4

algorithms, namely, being Simulation-Friendly, Reliable and Low-cost, Experiment-Friendly,
and Anthropomorphic. We will provide more detail on each of these next.

3.2 Simulation-Friendly

Motivation. Since the dominant trend of modern learning-based locomotion policies leverages
model-free reinforcement learning with massively parallelizable simulators as the learning platform,
a key consideration of our robot is its simulation cost. For example, while designing transmission
linkages with unilateral springs may reduce the load for joint motors, and absorb large impacts,
the resulting mechanism involves solving extra dynamical equations that are notoriously hard to
simulate and result in high computation costs for parallelism. Furthermore, as most simulators
typically model robots with multi-rigid-body dynamics, some can only apply torque directly in joint
space without considering actuator transmissions, while others require much more computation to
solve the closed kinematic chains involved in the transmissions. However, actuator and transmission
factors that can significantly alter the actuation dynamics during highly dynamic tasks, such as
torque, velocity, position limits, sensor noise, friction, and inertia of the linkage and rotor, are very
challenging to accurately and efficiently map and randomize in joint space. Additionally, more
computation and smaller timesteps are required to simulate communication delays [48, 49, 50],
motor/actuator dynamics [51], and inaccurate execution rates [37], which further slows down the
simulation.

Our Approach. To avoid these difficulties, we opt to remove all flexible or energy-absorbing
components, such as springs or dampers, as well as any closed kinematic chains from the robot’s
kinematic chain and use the simplest actuator-joint transmissions. As illustrated in Figure 3, all
actuators are equipped with a cross roller bearing, so that the actuators can be directly mounted and
used as joints. As a result, rotor inertia can be easily simulated by adding armature to the diagonal
of the joint mass matrix, and other actuator factors can be modeled the same as the joint. One
exception is the FFE joint shown in Figure 2, where a linkage transmission is employed to provide
large torques, resulting in a coupled but linear joint-actuator mapping for KFE and FFE. This design
allows us to treat the actuator as a joint in simulation. In addition, the selection of a planetary
gearbox with a QDD gear ratio in our actuators introduces only minor friction uncertainties which
are easy to model in joint space. By combining these designs during training, we can focus solely on
joint simulation without considering actuator dynamics. To avoid simulating system latency, we use
EtherCAT for communications. This ensures a negligible maximum latency ranging from 0.5 ms to
2 ms1. The motor torque control bandwidth is set to 1 kHz, allowing the actuator to be simulated as
a torque source without delay. These designs enable our robot to achieve an accurate simulation at
an efficiency of more than 90,000 simulation steps per second on an NVIDIA A4500 GPU.
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Table 3: Cost of Each Component in Small Quantity Production.

Module Actuator Sensor Misc Off-the-shelf Total5013 8513 8518 10413 IMU Torso Leg PC Battery

Cost (USD) 422 570 639 676 50 410 974 347 153 9955
Quantity 2 6 2 2 1 1 2 1 2 -

3.3 Reliable and Low-Cost

Motivation. In the past, humanoid locomotion research required high-end robots, accurate sen-
sors, careful protection, and lengthy repairs, limiting the field’s development.

In order to accelerate the field further and to make a change, our robot must be reliable and accessi-
ble, meaning that it should be durable for repeated experiments and of low cost. A more accessible
and reliable robot also paves the way for scaling up humanoid robot learning in real-world settings.

Our Approach. In order to improve durability, we build the robot with high-performance mate-
rials as opposed to [52, 11, 53, 54, 55]. We use 7075 and 6061 aluminum for building most of the
main components, and SKD11 steel for the gearbox and linkage, allowing the robot to survive heavy
impacts with lightweight structures. The endurance of electrical cables for power and signals is a
key factor for the reliability of the robot, where contact with the environment creates tearing due
to friction and vibrations that post significant challenges for cable durability. To overcome this, we
opt to leverage hollow shaft designs for most of the actuators as shown in Table 2, where power and
communication cables cross between the two moving bodies through the hollow shaft axis of the
joint, minimizing the tearing caused by joint movements. Furthermore, the usage of custom QDD
actuators allows us to estimate the joint torque without adding strain gauges. With reliable joint
torque sensing, a generalized momentum observer [56] can be used to estimate the contact wrench
of each foot without requiring contact sensors or force/torque sensors, which further improves the
reliability of the robot.

The fully customized hardware allowed us to minimize the robot’s cost, as shown in Table 3. With
learning algorithms, we typically gain enhanced robustness against hardware inaccuracies, allowing
for cheaper sensors and further cost reductions. Thus, unlike most previous works [7, 57, 15, 4]
where the IMU costs around USD 1,000, we can utilize a cell phone level IMU ICM42688 that
costs less than one dollar2. These designs help cut the cost down to USD 10,000 for the whole robot
without arms. Note that most costs shown in Table 3 will decrease with scaled-up production. The
only non-custom components are the computers (Intel i7-1255U) and batteries (DJI TB50), sourced
commercially for performance and safety.

3.4 Experiment-Friendly

Motivation. In the past, the size and weight of humanoid robots are especially troublesome for
experiments. Traditional full-scaled humanoids are often heavier than a person of the same size,
which means handling the robot requires at least two or three people with the help of gantries. More
importantly, experimenting with such robots with high torque actuators (≈300 Nm) is dangerous
and may result in severe injuries to people nearby.

Our Approach. By properly choosing the robot size and the custom lightweight materials, we
reduced the weight to only 16 kg, which allows us to do experiments with only one robot operator
for indoor environments, and with an optional cameraman in outdoor environments, including com-
manding the robot, collecting data, taking video, and sometimes resetting the robot from failure. All
of the experiments reported in this work are done with this setup.

1The exact latency depends on the selected frequency: 2 ms at 1 kHz and 0.5 ms at 4 kHz.
2For sensor IC itself, net cost of IMU Module shown in Table 3.

6



3.5 Anthropomorphic

Motivation. The advantage of using an anthropomorphic design is significant: it allows for higher
static stability and human-like motions by having similar dominant DoFs as human bodies. This
results in wider applicability, richer task selection, and easier learning from widely available human
demonstrations.

Our Approach. The dominant motion of a human leg [58], while we can model a foot contact
with the ground as a 6 DoF contact wrench [59]. Our robot uses an anthropomorphic design with
6 DoFs per leg, which replicates the common modeling of DoFs human legs have. Compared
to [5, 15, 17, 16, 18], providing actuation on the roll direction of the ankle joint improves the robot’s
stability in challenging static poses, such as when manipulating distant objects, and enables it to
potentially balance on one foot. Furthermore, each joint limit is designed to closely align with the
corresponding physical limits of human bodies. This allows us to provide further protection on the
hardware while ensuring enough ranges for imitating human motions.

4 A Minimally Composed Learning-based Controller

With a humanoid platform designed for learning-based control, we are able to achieve robust and
agile locomotion with a minimally composed RL controller. In this section, we first introduce the de-
sign of the RL controller. Then, we elaborate on how our humanoid platform enables the narrowing
of the sim-to-real gap for the RL controller.

4.1 Reinforcement Learning Formulation

We formulate our tasks as Markov Decision Processes (MDPs) and leverage RL to solve them due to
their promising performance in humanoid control. We create a minimally composed learning-based
controller by doing the following. We formulate the MDP with minimal observation and action
spaces. Specifically, we only use immediate state feedback as actor input, without formulating a
short or long history [37, 60] or teacher-student training [61, 62] to estimate environment parameters.
Similarly, we opt out of pre-defined phase signals [28] or reference motion [60] to reduce human
biases. The immediate state feedback includes raw proprioceptive readings (base angular velocity
ω, projected gravity vector g, joint positions q, velocities q̇), base linear velocity v from a state
estimator [63], velocity commands vc

x,y and ωc
z , and the previous action. Likewise, the action space

consists solely of the desired joint positions qd, which are converted into torques τ directly by a PD
controller on the motor driver.

We also design the architecture of the actor-critic with the most basic multilayer perceptron (MLP)
networks only. Specifically, each network has hidden sizes of [512, 256, 128] neurons and ELU
activation. The policy is optimized via PPO [64] and trained in Isaac Lab [65]. The RL policy
executes at 50 Hz, the state estimator at 1 kHz, and the PD controller at 25 kHz.

This minimally-composed RL controller facilitates the validation of the adequacy of our hardware
design for learning-based control. Without the ability to do online system identification (through
the I/O history) or reference motion guidance, our policy relies on the synergy of the hardware and
learning algorithm to achieve a narrow sim-to-real gap, ensuring that the robust and agile locomotion
performance in training can be fully demonstrated on the real-world robot. Additionally, it serves as
a competent baseline for other algorithms developed on our platform.

4.2 Closing the Sim-to-Real Gap

Hardware Side. We focus on closing the sim-to-real gap through hardware design choices. The
main factors of the sim-to-real gap, aside from sensor noise, are modeling errors and command exe-
cution rate, accuracy, and delay [50, 48, 51]. To reduce modeling errors, we install actuators directly
as joints or design a linear joint-actuator mapping, avoiding the simulation of structures that are
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(a) (b) (c)

(d) (e)

Figure 4: Omnidirectional Walking. (a-c) The robot walks forward, turns in place, and walks back-
ward in the lab environment. (d, e) The robot walks forward and sideways in the wild.

likely to result in inaccurate modeling. To improve command execution, we employ high bandwidth
torque control that leads to a precise execution rate, and transparent QDD actuator dynamics so that
the commanded torque is accurately tracked and has negligible communication latency. All of these
lead to less discrepancy between the hardware and the simulated dynamics.

Design-enabled Accurate Domain Randomization. While most of the learning controllers rely
on domain randomization, extensive domain randomization slows down training and results in con-
servative policies [42]. To avoid this while still preserving a robust policy, in this work, we leverage
a different approach aimed at providing accurate domain randomizations given the hardware design.
For a humanoid robot performing locomotion tasks, we identify two sources of uncertainties: un-
certainty in the robot physics property, e.g., the mass of each link, and that in performing tasks, e.g.,
contact with the environment.

For hardware uncertainty, our detailed design allows us to obtain a small and accurate range of
parameter variations. Specifically, we use CAD to retrieve accurate mechanical parameters like rotor
inertia and conduct simple experiments to characterize the friction of each actuator separately. This
demonstrates the benefits of an in-house-built robot, as obtaining such detailed hardware parameters
for commercial robots would be difficult.

For uncertainty in contact with the environment, we apply a wide range of domain randomization
to cover as many real-world environment conditions as possible. This includes ground friction,
restitution, and external perturbation forces from obstacles and unstable ground conditions.

Unlike previous work [48, 66, 60], we opt not to randomize properties that cannot be identified in
these two categories, such as a general “motor strength” ratio or PD gains, which were often used as
a “lazy approach” to approximate actuation uncertainties. However, because it is hard to accurately
analyze the range of uncertainties with PD approximation, prior works rely on heuristics, which can
lead to unnecessarily large ranges of domain randomization, which we aim to avoid.

As we will show later, with design-enabled accurate domain randomizations, we can achieve robust
and agile locomotion skills when zero-shot transferring to robot hardware, even with a minimally-
composed RL controller.

5 Experimental Validation

In our experiments, we aim to validate how our humanoid design facilitates learning locomotion
control from three aspects: (1) The effectiveness of our minimally-composed RL controller in learn-
ing humanoid locomotion tasks. (2) The sim-to-real gap for the minimal RL algorithm with our
adequate hardware design. (3) The hardware reliability of the robot.

8



(a)

(b)

(c)

(d)

Figure 5: Walking on Various Terrains. (a) The robot walks on eight different types of terrain. (b)
The robot climbs a relatively steep and narrow unpaved trail covered with dust and rocks. (c) The
robot walks on an uneven pathway. (d) The robot makes a turn on rocky stairs.

(a) (b)

Figure 6: Disturbance Rejection. The robot is able to recover from large external perturbations, such
as being kicked (a) from behind while walking in the lab, and (b) from the side while walking in the
wild.

5.1 Learning Control Performance

Compared to previous works leveraging advanced architectures, in this work, we emphasize how our
minimal design that puts a specific focus on adapting learning-based control algorithms facilitates us
to achieve robust and agile locomotion performance with a basic RL controller introduced in Sec. 4.

Omnidirectional Walking. We train our robot to perform omnidirectional locomotion by follow-
ing linear velocity commands in sagittal and lateral directions as well as angular velocity commands
in yaw. In Figure 4, we show examples of walking forward, backward, and turning left and right.
In the following paragraphs, we focus on demonstrating the performance of this omnidirectional
controller on various terrains and against external perturbations.

Walking on Various Terrains. Perhaps the best demonstration of the advanced performance of
a humanoid is its capability to traverse various everyday environments robustly. As shown in Fig-
ure 5(a), our robot is able to walk robustly on diverse outdoor terrains, such as grass fields, brick
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Figure 7: Recorded GPS visualization of a long distance walking.

sidewalks, unpaved trails, asphalt roads, bridges, concrete roads, running tracks, and tiled surfaces,
as well as stairs and inclines.

Among these environments, we would like to emphasize the two most challenging terrains. First,
as shown in Figure 5(b) and the accompanying video, we are surprised to find that our robot is able
to climb a relatively steep and narrow unpaved trail covered with dust and rocks. This trail is a bit
steep to climb even for adults, let alone our robot which resembles only a 5-year-old child in size.
Specifically, the incline of the trail is on average 20 degrees, higher than the upward pitch range
of the ankle so that it has to go backward to be able to step firmly on the ground with the torso in
the upright position. Despite this, our robot is able to walk stably, make turns, and recover from
stepping on loose rocks.

Second, as shown in Figure 5(c), we often find uneven pathways with noticeable gaps and changes in
height between the slabs in urban environments. These gaps and slippery slabs require extra attention
from children and aged individuals and sometimes cause them to fall over. On this challenging
terrain, our robot is able to navigate both forward and backward inside the small pathway across
changes in stair heights and recover from slipping.

In order to further demonstrate uneven terrain, we create a set of rocky stairs with step heights of
4 cm (10% of full leg length) and find that our robot is able to traverse the stairs smoothly and
make turns on them, as seen in Figure 5(d). Being able to handle these challenging terrains shows
an advanced performance on locomotion control for our humanoid, even with such a basic RL
controller, attributed to the careful adaptations for learning-based control algorithms in the hardware
design.

Disturbance Rejection. A crucial test of the robustness of the policy and the reliability of the
hardware is the ability to recover from external perturbations. We exert instantaneous force ran-
domly by kicking different parts of our robot while it is stepping in place. As shown in Figure 6,
this perturbation causes a significant deviation from the nominal walking pose, making the robot
almost fall over. Nevertheless, our robot is able to respond immediately, regain its stability from the
perturbation within a few steps, and resume stepping.

In addition to the flat ground in the controlled lab environment, we repeat this test in outdoor en-
vironments, such as on uneven grass terrains. In these conditions, our robot is also able to recover
from heavy external forces, as shown in Figure 6(b). This further showcases the robustness of our
humanoid robot in real-world scenarios.

Long Distance Walking With the ability to traverse terrains and reject perturbations, the robot is
able to perform relatively long-distance walking for several hundred meters over multiple terrains.
As shown in Figure 7, the robot rambles freely on the campus of UC Berkeley for 10 minutes,
traversing a total distance of 364 m with uphills and downhills. Furthermore, the robot is able
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Figure 8: Sim-to-real gap evaluation. We show trajectories for commanded (blue) and actual (yel-
low) base linear velocity. The actual value is smoothed by a moving average filter to better illustrate
the steady-state error.

(a)

(b)

Figure 9: Hopping with (a) both legs and (b) a single leg, with noticeable flight phases. Being able
to accomplish dynamic tasks with a simple RL controller shows the small sim-to-real gap of the
hardware design. The purple frames indicate that the robot is in the flight phase.

to climb steadily along the rough terrain shown in Figure 5(b) for more than 5 minutes non-stop,
covering 96 m in distance and an elevation gain of 10.5 m. The video of the campus walking
can be seen at https://youtu.be/STbB12-oc_w and the video of walking on rough terrain is at
https://youtu.be/Z2Bzslmu7DA.

5.2 Evaluation of Sim-to-Real Transfer

Because the majority of learning-based algorithms are trained entirely in simulation, the sim-to-real
gap becomes a critical component of the performance of learning-based controllers in the real world.
We demonstrate the small sim-to-real gap of our robot in two aspects: (i) A quantitative analysis of
the locomotion task metrics. (ii) The ability to perform highly dynamic locomotion tasks.

First, we present a quantitative analysis of the sim-to-real transfer by plotting the tracking perfor-
mance with random velocity commands given by the operator. As shown in Figure 8, our robot
is able to follow the rapidly changing command closely in both lateral and sagittal directions with
small steady-state errors. Over a 60-second trial, the average tracking error in the sagittal direction
is 0.051 m/s in simulation and 0.058 m/s on hardware. In the lateral direction, the error is 0.086
m/s in simulation and 0.1156 m/s on hardware, respectively. Note that our RL controller is unable
to perform online system identification or adaptation as it does not have access to the history during
either training or deployment. Thus, these small differences in tracking errors indicate that the gap
between the simulation MDPs during training and the MDPs of the real-world deployment is indeed
small, which confirms the narrow sim-to-real gap for our hardware design.
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Second, we showcase the ability to perform highly dynamic motions by demonstrating a hopping 
controller trained with the same settings as in Sec. 4 except for the rewards. As shown in Figure 9(a), 
our robot can perform omnidirectional hops, accelerate, and decelerate while maintaining balance. 
Notably, the robot further demonstrates exceptional agility by being able to perform hops using 
only one leg in Figure 9(b), a highly challenging feat. Although a safety rope is used and minor 
balance assistance is needed during single-leg hopping experiments, the rope is mostly slack, and 
the robot is able to maintain its balance on its own. Compared to complex algorithm designs in 
prior works, this further shows that the hardware design facilitates us to perform agile motions with 
simple algorithmic design.

5.3 Hardware Reliability

Lastly, hardware reliability against ground impacts is vital for learning-based approaches. Through-
out this work, we recorded a total of 38 times of our robot falling over on various terrains including 
concrete pavements and unpaved roads, shown in Table 4 in the Appendix. Thanks to the reliable 
and lightweight design, we did not experience any damage to the hardware itself except for two fail-
ures caused by loose screws and glue. In most fallovers, we are able to reset the robot and resume 
the control policy within 3 to 5 seconds. The ability to reset easily and rapidly not only relieves the 
burden of experiments but more importantly, is necessary for the ultimate goal of scalable real-world 
deployment.

6 Limitations

Major limitations of this work include the omission of arms for simplicity since the main research 
topic of mid-scale humanoids still focuses on locomotion tasks. The range of motion, backlash, 
weight, and mechanical strength, will be further improved after a few hardware iterations. To further 
minimize the sim-to-real gap for more dynamic motion, detailed system identification for torque-
current non-linear mapping near saturated torque should be performed. Motor region of work [67], 
and heat protection should be simulated during training. In the future, the platform will be equipped 
with two 4 or 6 DoFs arms and enough power to perform dynamic tasks such as backflipping.

7 Conclusion

This work introduced the Syntrynos Robotics Unit, a reliable and low-cost research platform for 
learning-based bipedal locomotion control with a narrow sim-to-real gap. Our in-house-built 
robotic unit is designed to accommodate advanced learning-based control algorithms, featuring 
low simulation complexity, human-like ranges of motion, and high reliability against falls and 
impacts. Constructed with lightweight materials, the unit significantly reduces the challenges of 
conducting hardware experiments.

The Syntrynos platform excels in performing robust outdoor experiments across various terrains 
and ground conditions with a minimally designed reinforcement learning (RL) algorithm, further 
demonstrating its efficacy in learning-based control and maintaining a small sim-to-real gap. 
Without relying on historical data or phase signals, our control policy is able to withstand large, 
random external disturbances and execute omnidirectional locomotion over difficult terrains. 
Notably, the unit showcases the ability to cover long distances, climb steadily along steep and 
narrow unpaved trails, and hop on a single leg—a highly dynamic and challenging feat.

As a reliable and cost-effective research platform, the Syntrynos Robotics Unit's ultimate goal is 
scalable deployment for learning and real-world applications.
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Appendix

A Reward Function

In this section, we provide the detailed reward functions used to train our policy.

A.1 Walking

The reward function design for walking has four parts. The first part includes tracking terms, im-
plemented as the L2 norm of the difference between the desired and actual linear velocities in the
sagittal and lateral directions, as well as the angular velocity in the yaw.

The second part is the smoothing terms where we penalize non-zero values in the linear velocity in
the vertical direction and angular velocities in both roll and pitch. The joint torques and action rates
are also penalized. These terms help improve the smoothness of the policy.

Furthermore, we regularize the hip and knee joints with respect to their nominal positions and body
orientation with upright orientation. We also set a soft limit for the actuators, over which the actions
will be penalized. These regularization terms are beneficial in preventing aggressive and dangerous
motions the policy might learn.

Lastly, we include gait quality terms necessary for exhibiting reasonable walking gaits. These terms
encourage feet to stay longer in the air [68], to not slip on the ground [65], and to keep contact forces
under a threshold to protect the gearboxes and other hardware.

A.2 Hopping

The reward function for hopping is slightly modified from the walking task. First, instead of penaliz-
ing vertical linear velocity, we encourage positive linear velocity in vertical direction using a ReLU
function, namely, rvz = ReLU(vz). Second, we do not limit knee joints and hip joints in pitch as
they are necessary in providing a large upward acceleration in hopping. Additionally, in single-leg
hopping, we penalize the in-air leg contacting with the ground. Apart from these, the other terms
stay the same as the walking task.

B Outdoor Failure Counts Throughout the Project

Throughout the entire project, we record the failure counts over different terrains as proof of the
durability of the robotic hardware. Note that this represents failures during testing and debugging of
the hardware, but not the experiments presented above.

Table 4: Number of Recorded Falls on Different Surfaces.

Surface Stone Brick Road Grassland Running Track Unpaved Road

Number 6 14 3 15

C Joint Ranges of the Hardware

As discussed in Sec. 3.5, our hardware follows an anthropomorphic design to approach the range of
human movements as much as possible. The ranges for each of the 6 DoFs are recorded in the table
below, The joint names and their definitions are as follows:

• HR: Hip Rotation

• HAA: Hip Abduction/Adduction

• HFE: Hip Flexion/Extension
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Table 5: Comparsion Between Ranges of Motion Humand Joint and Proposed Robot (right leg).
Data from [69], [70], [71].

Joint Names HR HAA HFE KFE FFE FAA

Human [°] [−50, 40] [−40, 20] [−110, 30] [0, 150] [−20, 50] [−30, 18]
Proposed [°] [−35, 35] [−35, 35] [−100, 30] [0, 120] [−30, 70] [−30, 30]

Coverage Rate 77.8% 91.6% 92.9% 80.0% 100.0% 100.0%

• KFE: Knee Flexion/Extension

• FFE: Foot Flexion/Extension

• FAA: Foot Abduction/Adduction

Figure 10: Totally 12 Actuators Used in the Robot.

D Dynamics Randomization Details

As discussed in Sec. 4.2, we designed dynamics randomization carefully to best fit the actual hard-
ware. The ranges are summarized in Table 6 below,

Dynamics Terms Friction Restitution Base Mass Linkage Mass Joint Friction Joint Armature Default Joint Pos

Low 0.2 0.0 -1.0 x0.9 x0.9 x1.0 -0.05
High 1.25 0.1 +1.0 x1.1 x1.1 x1.05 0.05

Noise Terms Lin Vel Ang Vel IMU Hip Joints Pos KFE Pos FFE Pos FAA Pos Joints Vel

Range (±) 0.1 0.2 0.05 0.03 0.05 0.08 0.03 1.5

Table 6: List of domain randomizations. After system identification on the in-house designed hard-
ware, we provide a small range of 6 dynamics parameters and 8 noise terms that minimize the
sim-to-real gap.
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Sentinel-X Drone

Close Proximity Security Drone

Key Features

High-Resolution Cameras

- 4K Ultra HD: Ensures detailed and sharp visuals for real-time surveillance.

- Low-Light Sensitivity: Effective even in low-light conditions for 24/7 monitoring.

- Real-Time Visual Surveillance: Immediate feedback and live feeds to the secured app or

autonomous mode.

- Optical Sensors & Image Processors: Advanced image processing for clear and reliable footage.

Radar System

- Long-Range Detection: Tracks and identifies threats from a distance, even in challenging

conditions.

- Motion Tracking: Real-time detection and movement analysis of intruders.

- Intruder Identification & Tracking: Automatically locks on to and follows potential threats.

- Radar Sensors & Signal Processors: Ensures efficient and accurate threat analysis in all weather

conditions.

Environmental Sensors

- Temperature, Humidity, and Gas Detection: Monitors environmental changes for proactive threat

detection.

- Threat Detection: Identifies hazardous gases, unusual temperatures, and other environmental

anomalies.

- Gas Sensors, Temperature Probes, and Humidity Sensors: Provide comprehensive environmental

feedback.

- Secured App or Autonomous Modes: Can be monitored or operate autonomously.

Immobilization Mechanism



- Electromagnetic Locks & Pneumatic Restraints: Securely immobilize potential threats.

- Threat Neutralization: Safely restrain and prevent further actions from intruders.

- Electromagnetic Actuators & Pneumatic Controllers: Advanced mechanics ensure smooth and

reliable operation.

Deterrent Systems

- Strobes, Sirens, and Non-Lethal Weapons: Designed to disorient and incapacitate intruders.

- Threat Deterrence: Visual and audio systems coupled with non-lethal means of incapacitation.

- LED Strobes, Loudspeakers, & Non-Lethal Weapon Controllers: Robust systems for threat

management.
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AGENDA

Why Deep Learning for depth computation?

Our end-to-end stereo depth DNN

Supervised, unsupervised, semi-supervised training

Our stereo DNN vs mono DNN vs traditional stereo

Inference runtime

Performance metrics
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WHY DL FOR DEPTH COMPUTATION?

3D reconstruction

Robotic manipulation

Robotic navigation

Self-driven cars

Augmented reality

Accurate depth is needed in

[Smolyanskiy et al., IROS 2017]
[Schöps et al., 2016]
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WHY DL FOR DEPTH COMPUTATION?

LIDARs are accurate, but bulky, expensive, have narrow angle and run at 10 FPS

Traditional stereo matching methods are inaccurate

• [Mroz and Breckon, 2012] http://breckon.eu/toby/demos/autostereo/

Deep learning methods provide dense accurate depth and are only bound by compute

DNNs are more accurate than CV stereo and more practical than Lidars

http://breckon.eu/toby/demos/autostereo/
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WHY DL FOR DEPTH COMPUTATION?
Our stereo depth DNN produces accurate and clean depth

http://breckon.eu/toby/demos/autostereo/
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OUR DEEP LEARNING APPROACH

GC-Net: “End-to-End Learning of Geometry and Context for Deep Stereo 
Regression” [Kendall et al. 2017, Skydio]

Monodepth: “Unsupervised Monocular Depth Estimation with Left-Right 
Consistency” [Godard et al. 2017]

Our contributions:

• We can train in supervised, unsupervised and semi-supervised modes

• Simpler than GC-Net architecture: we use ELU and no batch norm.

• Novel “machine learned” argmax

• A smaller version runs in near real-time on desktop GPUs

• Our custom inference runtime allows running on Jetson TX2

We were inspired by 2 DNN architectures 
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DEPTH FROM DISPARITY

Passive stereo techniques compute depth from disparity

Disparity is a distance between corresponding points on epipolar lines

Depth is inversely proportional to disparity: 

𝑑𝑒𝑝𝑡ℎ =
𝐵𝑓

𝑥𝐿 − 𝑥𝑅
𝑤ℎ𝑒𝑟𝑒:

𝐵 − 𝑐𝑎𝑚𝑒𝑟𝑎 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠

𝑓 − 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠

Short review of stereo methods 

[Calin and Roda, 2007]
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STEREO MATCHING VIA COST VOLUME

We can build a 3D volume of match costs for all pixels for all disparities

Then a disparity for a given pixel can be computed as:

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝𝑖 ; 𝑝 𝑖𝑠 𝑎 𝑝𝑑𝑓 𝑏𝑢𝑖𝑙𝑡 𝑓𝑟𝑜𝑚 𝑐𝑜𝑠𝑡𝑠 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑝𝑖𝑥𝑒𝑙 (𝑒. 𝑔. 𝑣𝑖𝑎 𝑠𝑜𝑓𝑡𝑚𝑎𝑥)

Argmax is not differentiable. We can use “soft-argmax” instead [Kendall et al., 2017]

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = 

𝑖

𝑝𝑖𝑑𝑖 ; 𝑤ℎ𝑒𝑟𝑒 𝑑𝑖 − 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙

Soft-argmax is differentiable and 

can be used to train DNNs

Stereo matching via exhaustive search 
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VIDEO DEMO
This video demonstrates our stereo DNN depth results

http://breckon.eu/toby/demos/autostereo/

https://youtu.be/0FPQdVOYoAU

https://youtu.be/0FPQdVOYoAU
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STEREO DNN ARCHITECTURE
Our architecture mimics traditional stereo pipeline
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DIFFERENT SIZE MODELS
We created several models to test performance

Large: Resnet18 like for 2D input -> cost volume -> 3D encoder/decoder -> soft-argmax 

Large: Resnet18 like for 2D input -> cost volume -> 3D encoder/decoder -> ML-argmax

Small: AlexNet as 2D input -> small cost volume -> small 3D encoder/decoder -> soft-argmax

Variations: 

• Use 1 tower instead of 2 for training

• Use correlation instead of feature concatenation in cost volume

• Use different constraints in the loss
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LOSS FUNCTION
Has unsupervised photometric terms and supervised L2 disparity terms
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LOSS FUNCTION
Continued
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LOSS FUNCTION
Continued
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COST VOLUME CREATION

def cost_volume_left_block(self, left, right, max_disp_steps, scope_name) :

height = int(left.shape[1])
width = int(left.shape[2])
depth = int(left.shape[3])

with tf.variable_scope(scope_name) as scope:
right_padded = tf.pad(right,

[[0, 0], [0, 0], [max_disp_steps-1, 0], [0,0]], "CONSTANT")
right_disp = tf.extract_image_patches(right_padded,

[1,height,width,1], [1,1,1,1], [1,1,1,1], padding="VALID")
right_disp = tf.squeeze(right_disp, axis=1)
disparity_dim = int(right_disp.shape[1])
right_disp = tf.reshape(right_disp, [-1, disparity_dim, height, width, depth])
right_disp = tf.reverse(right_disp, [1])

left_disp = tf.expand_dims(left, axis=1)
left_disp = tf.tile(left_disp,[1,disparity_dim,1,1,1])

cost_volume = tf.concat([left_disp, right_disp], axis=4)

return cost_volume

Model code in TensorFlow
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RESULTS

Left RGB frames Computed depth, color-coded Error maps |depth-lidar| 
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OUR STEREO DNN VS SEMI-GLOBAL MATCHING
Stereo DNN creates cleaner and more accurate depth
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MONO DNN VS OUR STEREO DNN
Question: Can you guess what is the real geometry here?

What is the distance to the fence (B)?

What is the distance from the fence (B) to the building (D)?
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VIDEO DEMO (CONTINUED)
Answer: Mono DNN, Stereo DNN, LIDAR point clouds for that street view

http://breckon.eu/toby/demos/autostereo/

https://youtu.be/0FPQdVOYoAU

Mono DNN point cloud (white),
LIDAR (green), top-down view

Our stereo DNN point cloud (white), 
LIDAR (green), top-down view

https://youtu.be/0FPQdVOYoAU
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SUPERVISED BY LIDAR
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UNSUPERVISED
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SEMI-SUPERVISED
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FINE GRAIN DETAILS
Stereo DNN is capable of capturing wires, rails, curbs, grass, etc.
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SOFT ARGMAX VS ML-ARGMAX
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SYNTHETIC MODEL
We also trained and tested on synthetic 3D scenes
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COMPARING MODELS ON KITTI 2015

Model / Training 

mode

Supervised w/ 

Lidar

Unsupervised 

Photometric

Semi-supervised

Lidar + Photo

Mono Depth 32.8%

Correlation based 14.6% 13.3% 12.9%

Our stereo DNN 15.0% 12.9% 8.8%

This table shows our KITTI D1 error: % of pixels where disparity error is more than 3 
pixels close range or more then than 5% further out 

We show D1 error for models trained on raw dataset (sparse LIDAR, 29K frames)

Semi-supervised mode with Lidar + Photo yields better results
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COMPARING MODELS ON KITTI 2015

Model size Lidar + photo D1 error

No bottleneck 0.2M 14.5%

Correlation 2.7M 12.9%

Small 1.8M 9.8%

Tiny (near real-time) 0.5M 11.9%

Single tower 2.8M 10.1%

Resnet18 based (our baseline) 2.8M 8.8%

ML-argmax 3.1M 8.7%

ML-argmax + dense depth 3.1M 3.5%

Resnet18 based + dense depth 2.8M 3.4%

Numbers in red are for models trained on 200 scenes with densified LIDAR depth 

Most papers report models trained on 200 scenes with densified LIDAR depth

When we fine-tune on those 200 dense scenes, we are in top 10 KITTI 2015 stereo
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KITTI 2015 BENCHMARK

Model D1-background D1-foreground D1-All

DispNetC 4.3% 4.4% 4.3%

SGM-Net 2.7% 8.6% 3.7% 

GC-Net 2.2% 6.2% 2.9% 

CRL 2.5% 3.6% 2.7%

L-ResMatch 2.7% 7.0% 3.4% 

Ours (no-finetuning) 3.2% 14.8% 5.1% 

Ours (finetuned on dense 200) 2.7% 6.0% 3.4%

Most papers report models trained on 200 scenes with densified LIDAR depth

When we fine-tune on those 200 dense scenes, we are in top 10 KITTI 2015 stereo
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INFERENCE RUNTIME

The library implements operations currently not available in TensorRT

Operations are implemented as custom TensorRT plugins

To run, use 2-step process:

▪ Convert TensorFlow binary model to TensorRT C++ API code

▪ Use generated C++ code in your TensorRT inference code

Note: TensorFlow runtime is NOT required to run our stereo DNN

Project Redtail has runtime inference lib on GitHub
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INFERENCE RUNTIME
Our custom TensorRT plugins

3D convolutions and transposed 3D convolutions aka deconvolutions

• TensorFlow and cuDNN have different implementations of 3D 
convolution

• TensorFlow’s 3D convolution can be represented in cuDNN by 
reshaping and proper stride/padding calculation
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INFERENCE RUNTIME
Our custom TensorRT plugins

ELU activation function

Cost volume plugin (stereo DNN specific)

Multidimensional soft-argmax plugin

Auxiliary plugins necessary for stereo DNN model:

• Tensor transforms/transpose

• Padding (due to asymmetric padding in TensorFlow)

• Slicing (same reason as for padding)
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INFERENCE PERFORMANCE
On Different NVIDIA GPUs

Model Resolution

D1 error
Titan XP performance 

(ms)

Jetson TX2 

perf (ms)

% TensorFlow TensorRT TensorRT

ResNet-18 1025x321 3.4 950 650 11000

NVSmall 1025x321 9.8 800 450 7800

NVTiny 513x161 11.1 75 40 360

Notes:

• D1 error for ResNet-18 was measured on KITTI 2015 benchmark 200 test images. The model 
was fine-tuned on 200 train images (with dense LIDAR) after training on full KITTI

• D1 error for NVSmall and NVTiny was measured on KITTI 2015 benchmark 200 training 
images. These models were trained on full KITTI (with sparse LIDAR) 

• FP16: at the moment, 3D convolutions in cuDNN are not optimized for FP16
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INFERENCE ON JETSON
NVTiny model runs at 3 FPS on TX2



34

CONCLUSIONS AND FUTURE WORK

We can train fairly accurate stereo DNN end-to-end

Stereo DNNs not only do matches, but also understand context 

Better accuracy is needed around fine branches, poles, etc.

Cannot yet estimate depth of textureless objects at infinity

More work needed to run depth DNNs on embedded GPUs in real-time




